Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 2592-2608, 2022.
Article in English | WPRIM | ID: wpr-929393

ABSTRACT

Self-assembling carrier-free nanodrugs are attractive agents because they accumulate at tumor by an enhanced permeability and retention (EPR) effect without introduction of inactive substances, and some nanodrugs can alter the immune environment. We synthesized a peptidyl arginine deiminase 4 (PAD4) molecular inhibitor, ZD-E-1M. It could self-assembled into nanodrug ZD-E-1. Using confocal laser scanning microscopy, we observed its cellular colocalization, PAD4 activity and neutrophil extracellular traps (NETs) formation. The populations of immune cells and expression of immune-related proteins were determined by single-cell mass cytometry. ZD-E-1 formed nanoflowers in an acidic environment, whereas it formed nanospheres at pH 7.4. Accumulation of ZD-E-1 at tumor was pH-responsive because of its pH-dependent differences in the size and shape. It could enter the nucleus and bind to PAD4 to prolong the intracellular retention time. In mice, ZD-E-1 inhibited tumor growth and metastasis by inhibiting PAD4 activity and NETs formation. Besides, ZD-E-1 could regulate the ratio of immune cells in LLC tumor-bearing mice. Immunosuppressive proteins like LAG3 were suppressed, while IFN-γ and TNF-α as stimulators of tumor immune response were upregulated. Overall, ZD-E-1 is a self-assembling carrier-free nanodrug that responds to pH, inhibits PAD4 activity, blocks neutrophil extracellular traps formation, and improves the tumor immune microenvironment.

2.
Chinese Journal of Biotechnology ; (12): 4705-4718, 2022.
Article in Chinese | WPRIM | ID: wpr-970342

ABSTRACT

Catalase is widely used in the food, medical, and textile industries. It possesses exceptional properties including high catalytic efficiency, high specificity, and environmental friendliness. Free catalase cannot be recycled and reused in industry, resulting in a costly industrial biotransformation process if catalase is used as a core ingredient. Developing a simple, mild, cost-effective, and environmentally friendly approach to immobilize catalase is anticipated to improve its utilization efficiency and enzymatic performance. In this study, the catalase KatA derived from Bacillus subtilis 168 was expressed in Escherichia coli. Following separation and purification, the purified enzyme was prepared as an immobilized enzyme in the form of enzyme-inorganic hybrid nanoflowers, and the enzymatic properties were investigated. The results indicated that the purified KatA was obtained through a three-step procedure that included ethanol precipitation, DEAE anion exchange chromatography, and hydrophobic chromatography. Then, by optimizing the process parameters, a novel KatA/Ca3(PO4)2 hybrid nanoflower was developed. The optimum reaction temperature of the free KatA was determined to be 35 ℃, the optimum reaction temperature of KatA/Ca3(PO4)2 hybrid nanoflowers was 30-35 ℃, and the optimum reaction pH of both was 11.0. The free KatA and KatA/Ca3(PO4)2 hybrid nanoflowers exhibited excellent stability at pH 4.0-11.0 and 25-50 ℃. The KatA/Ca3(PO4)2 hybrid nanoflowers demonstrated increased storage stability than that of the free KatA, maintaining 82% of the original enzymatic activity after 14 d of storage at 4 ℃, whereas the free KatA has only 50% of the original enzymatic activity. In addition, after 5 catalytic reactions, the nanoflower still maintained 55% of its initial enzymatic activity, indicating that it has good operational stability. The Km of the free KatA to the substrate hydrogen peroxide was (8.80±0.42) mmol/L, and the kcat/Km was (13 151.53± 299.19) L/(mmol·s). The Km of the KatA/Ca3(PO4)2 hybrid nanoflowers was (32.75±2.96) mmol/L, and the kcat/Km was (4 550.67±107.51) L/(mmol·s). Compared to the free KatA, the affinity of KatA/Ca3(PO4)2 hybrid nanoflowers to the substrate hydrogen peroxide was decreased, and the catalytic efficiency was also decreased. In summary, this study developed KatA/Ca3(PO4)2 hybrid nanoflowers using Ca2+ as a self-assembly inducer, which enhanced the enzymatic properties and will facilitate the environmentally friendly preparation and widespread application of immobilized catalase.


Subject(s)
Catalase , Nanostructures/chemistry , Hydrogen Peroxide/metabolism , Enzymes, Immobilized/chemistry , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL